4 By Steve Reid <steve@edmweb.com>, with small changes to make it
5 fit into mutt by Thomas Roessler <roessler@does-not-exist.org>.
9 Test Vectors (from FIPS PUB 180-1)
11 A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
12 "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
13 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
14 A million repetitions of "a"
15 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
26 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
28 /* blk0() and blk() perform the initial expand. */
29 /* I got the idea of expanding during the round function from SSLeay */
30 #ifdef WORDS_BIGENDIAN
31 # define blk0(i) block->l[i]
33 # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
34 |(rol(block->l[i],8)&0x00FF00FF))
37 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
38 ^block->l[(i+2)&15]^block->l[i&15],1))
40 /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
41 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
42 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
43 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
44 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
45 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
48 /* Hash a single 512-bit block. This is the core of the algorithm. */
50 void SHA1Transform(u_int32_t state[5], const unsigned char buffer[64])
52 u_int32_t a, b, c, d, e;
58 CHAR64LONG16 block[1]; /* use array to appear as a pointer */
59 memcpy(block, buffer, 64);
61 /* The following had better never be used because it causes the
62 * pointer-to-const buffer to be cast into a pointer to non-const.
63 * And the result is written through. I threw a "const" in, hoping
64 * this will cause a diagnostic.
66 CHAR64LONG16* block = (const CHAR64LONG16*)buffer;
68 /* Copy context->state[] to working vars */
74 /* 4 rounds of 20 operations each. Loop unrolled. */
75 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
76 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
77 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
78 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
79 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
80 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
81 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
82 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
83 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
84 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
85 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
86 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
87 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
88 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
89 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
90 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
91 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
92 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
93 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
94 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
95 /* Add the working vars back into context.state[] */
104 /* SHA1Init - Initialize new context */
106 void SHA1Init(SHA1_CTX* context)
108 /* SHA1 initialization constants */
109 context->state[0] = 0x67452301;
110 context->state[1] = 0xEFCDAB89;
111 context->state[2] = 0x98BADCFE;
112 context->state[3] = 0x10325476;
113 context->state[4] = 0xC3D2E1F0;
114 context->count[0] = context->count[1] = 0;
118 /* Run your data through this. */
120 void SHA1Update(SHA1_CTX* context, const unsigned char* data, u_int32_t len)
125 j = context->count[0];
126 if ((context->count[0] += len << 3) < j)
128 context->count[1] += (len>>29);
130 if ((j + len) > 63) {
131 memcpy(&context->buffer[j], data, (i = 64-j));
132 SHA1Transform(context->state, context->buffer);
133 for ( ; i + 63 < len; i += 64) {
134 SHA1Transform(context->state, &data[i]);
139 memcpy(&context->buffer[j], &data[i], len - i);
143 /* Add padding and return the message digest. */
145 void SHA1Final(unsigned char digest[20], SHA1_CTX* context)
148 unsigned char finalcount[8];
151 #if 0 /* untested "improvement" by DHR */
152 /* Convert context->count to a sequence of bytes
153 * in finalcount. Second element first, but
154 * big-endian order within element.
155 * But we do it all backwards.
157 unsigned char *fcp = &finalcount[8];
159 for (i = 0; i < 2; i++)
161 u_int32_t t = context->count[i];
164 for (j = 0; j < 4; t >>= 8, j++)
165 *--fcp = (unsigned char) t
168 for (i = 0; i < 8; i++) {
169 finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)]
170 >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
174 SHA1Update(context, &c, 1);
175 while ((context->count[0] & 504) != 448) {
177 SHA1Update(context, &c, 1);
179 SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
180 for (i = 0; i < 20; i++) {
181 digest[i] = (unsigned char)
182 ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);