
The TeraGyroid Experiment

S. M. Pickles1, R. J. Blake2, B. M. Boghosian3, J. M. Brooke1, J. Chin4, P. E. L. Clarke5, P. V. Coveney4,

R. Haines1, J. Harting4, M. Harvey4, S. Jha4, M. A. S. Jones1, M. Mc Keown1, R. L. Pinning1,
A. R. Porter1, K. Roy1, and M. Riding1.

1. Manchester Computing, University of Manchester, Oxford Road, Manchester, M13 9PL

2. CLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD
3. Tufts University, Department of Mathematics, 211 Bromfield-Pearson, Medford, Massachusetts 02155

4. Centre for Computational Science, Christopher Ingold Laboratories, University College London,
20 Gordon Street, London, WC1H 0AJ

5. Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT

The TeraGyroid experiment at SC’03 addressed a large-scale problem of genuine scientific interest
at the same time as showing how intercontinental grids enable new paradigms for collaborative
computational science that can dramatically reduce the time to insight. TeraGyroid used
computational steering to accelerate the exploration of parameter space in condensed matter
simulations. The scientific objective was to study the self-assembly, defect pathways and
dynamics of liquid crystalline cubic gyroid mesophases using the largest set of lattice-Boltzmann
(LB) simulations ever performed, involving in some cases lattices of over one billion sites and for
highly extended simulation times. We describe the application in sufficient detail to reveal how it
uses the grid to support interactions between its distributed parts, where the interfaces exist
between the application and the middleware infrastructure, what grid services and capabilities are
used, and why important design decisions were made. We also describe how the resources of high-
end computing services were federated with the UK e-Science Grid and the US TeraGrid to form
the TeraGyroid testbed, and summarise the “lessons learned” during the experiment.

1 Introduction
The TeraGyroid project was an ambitious experiment to investigate new opportunities for
computational science created by the Grid — for example, demonstrating new scientific
capabilities and international collaborative working — at the same time as establishing
technical collaborations to support the development of national and international Grids. High-
end computing resources were federated with the UK e-Science Grid and the US TeraGrid,
and harnessed in an accelerated programme of computational science that peaked during the
Supercomputing 2003 conference (SC’03). The application was provided by the RealityGrid
project (http://www.realitygrid.org).

The scientific objective of TeraGyroid was to study the self-assembly, defect pathways and
dynamics of liquid crystalline cubic gyroid mesophases using lattice-Boltzmann techniques
[1, 2, 3, 4]. This was achieved through the largest set of lattice-Boltzmann (LB) simulations
ever performed, involving in some cases lattices of over one billion sites and highly extended
simulation times. The gyroid phase was only very recently discovered in lattice-Boltzmann
simulations using the LB3D code [2]; its stability is strongly dependent on minimisation of
finite size effects (caused by the imposition of artificial three-dimensional periodic boundary),
implying the need to perform “large” simulations (by current standards), on lattices of at least
1283 sites. However, then one observes the presence of local, highly crystalline domains of
the fluid at varying orientations, between which there are domain boundaries and a
concomitant dynamics of defects. To study the dynamical properties of these defects, which
inform the macroscopic properties of the fluid, one needs to perform extremely large
simulations in an essentially finite-size-effect free environment, and for long enough to study
the way the domains interact. Thus, not only the size of these lattice-Boltzmann simulations
but also their duration is quite unprecedented — the computational effort to perform these

Page 1 of 10

http://www.realitygrid.org/

studies must be at least on the scale of what we had available within the TeraGyroid project
— and, by judicious use of all the RealityGrid capabilities and grid computing infrastructure
described below, the time taken to obtain scientific results has been massively reduced to just
a few months. Very little is known about the large scale fluid properties of these amphiphilic
liquid crystalline systems, either experimentally or theoretically. Some of the simulations, and
the detailed analysis of our results, are still ongoing at the time of writing this paper and will
be reported elsewhere.

A central theme of RealityGrid is the facilitation of distributed and collaborative exploration
of parameter space through computational steering and on-line, high-end visualization [5, 6].
The TeraGyroid experiment realised this theme in dramatic fashion at SC’03. A series of
demonstrations under the guise of “Transcontinental RealityGrids for Interactive
Collaborative Exploration of Parameter Space” (TRICEPS), won the HPC Challenge
competition in the category of “Most Innovative Data Intensive Application” [7]. The same
work was also demonstrated live before an Access Grid audience during the SC Global
showcase “Application Steering in a Collaborative Environment” [8]. A family of simulations
at different resolutions were spawned and steered into different regions of parameter space by
geographically distributed scientists on both sides of the Atlantic. The collaborative
environment of Access Grid was essential, not only for project planning, but also for
managing the distributed experiment and discussing the evolution of the simulations. Figure 1
shows a snapshot of the Access Grid screen as seen in Phoenix during SC Global.

Figure 1: Access Grid screen as seen in Phoenix during the SC Global session on application steering.

The remainder of this paper is organised as follows. In section 2, we describe RealityGrid’s
approach to computational steering and its application to the efficient exploration of
parameter space. We describe the architecture in sufficient detail to reveal how the Grid is
used to support interactions between the parts of the distributed application, where the
interfaces exist between the parts of the application and the middleware infrastructure, what
Grid services and capabilities are used, and why important design decisions were made. In
section 3, we describe the TeraGyroid testbed, its resources and networks, and the “lessons
learned” during the experiment: problems encountered, solutions adopted and issues
outstanding.

Page 2 of 10

2 Computational Steering and Parameter Space Exploration
Computational steering — the ability to interact with the simulation while it is running — was
central to the methodology of the TeraGyroid project. By monitoring the progress of
simulations, aided by on-line visualization, we avoid losing cycles to redundant computation
or even doing the wrong calculation. By tuning the value of steerable parameters, we quickly
learn how the simulation responds to perturbations and use this insight to design subsequent
computational experiments. Mapping out the parameter space of the model under study on
relatively coarse lattices (643 and 1283) informs the choices for parameter values for the most
expensive simulations on the largest lattices (5123, 10243). We now describe our
computational steering technologies and how these facilitate parameter space exploration.

2.1 The RealityGrid Steering Library and Toolkit
We instrument our applications for computational steering using the RealityGrid steering
library [9]. A fully instrumented application supports the following operations:

• Pause, resume, detach and stop
• Set values of steerable parameters
• Report values of monitored (read-only) parameters
• Emit "samples" to remote systems for e.g. on-line visualization
• Consume "samples" from remote systems
• Checkpoint and windback.

Emit and consume semantics are used because the application should not be aware of the
destination or source of the data. Windback here means revert to the state captured in a
previous checkpoint without stopping the application. In RealityGrid, the act of taking a
checkpoint is the responsibility of the application. LB3D supports malleable checkpoints, by
which we mean that the application can be restarted on a different number of processors on a
system of different architecture.

In designing and implementing the steering library, we have aimed to enable existing parallel
programs (often written in Fortran90 or C and designed for multi-processor supercomputers)
to be made steerable with a minimum of effort. The steering library is implemented in C, has
both Fortran 90 and C bindings, and permits any parallelisation technique (such as MPI or
OpenMP), with the proviso that the application developer assumes responsibility for
communicating any changes resulting from steering activity to all processes. The steering
library requires the application to register both monitored (read-only) and steerable (changed
only through user interaction) parameters. Similarly, the user may instruct the application to
take a checkpoint or restart from an existing one. We use a system of reverse communication
with the application. This means that, for actions such as emit, consume, checkpoint and
windback, the library simply notifies the application of what it needs to do. It is then the
application’s responsibility to carry out the task, possibly using utility routines from the
steering library.

Using the client-side part of the library, a generic steering client has been implemented using
C++ and the Qt GUI toolkit; web-based and PDA clients are under development. The client
discovers the commands supported by the application and its monitored/steered parameters as
part of the connection process, and constructs the necessary widgets on the fly.

Checkpoint/recovery is a key piece of functionality for computational steering. Sometimes the
scientist realises that an interesting transition has occurred, and wants to study the transition
in more detail; this can be accomplished by winding back the simulation to an earlier
checkpoint, and increasing the frequency of sample emissions for on-line visualization.

Page 3 of 10

An even more compelling scenario arises when computational steering is used for parameter
space exploration, as in TRICEPS. A scientist may be studying a physical system which is
suspected to contain a rich phase structure, but does not have sufficient resources available to
embark on a brute-force exploration of its multi-dimensional parameter space. Instead, the
scientist uses computational steering to begin mapping out this space. The simulation evolves
under an initial choice of parameters until the first signs of emergent structure are seen, and a
checkpoint is taken. The simulation evolves further, until the scientist recognises that the
system is beginning to equilibrate, and takes another checkpoint. Suspecting that further
equilibration will not yield any new insight, the scientist now rewinds to an earlier
checkpoint, chooses a different set of parameters, and observes the system’s evolution in a
new direction. In this way, the scientist assembles a tree of checkpoints — our use of
checkpoint trees was inspired by GRASPARC [10] — that sample different regions of the
parameter space under study, while carefully husbanding his or her allocation of computer
time. Different branches of the tree can be explored in parallel. The scientist can always
revisit a particular branch of the tree at a later time should this prove necessary. This process
is illustrated in Figure 2, in which a Lattice-Boltzmann simulation is used to study the phase
structure of a mixture of fluids. Here one dimension of the parameter space is explored by
varying the surfactant-surfactant coupling constant gss.

Figure 2. Parameter space exploration gives rise to a tree of checkpoints.

2.2 The Architecture of Steering
Figure 3 shows a schematic representation of our three-tier architecture for computational
steering for the case in which a visualization component is connected to the simulation
component. One or both of these components may be steered using the steering client. Both
components are started independently and can be attached and detached dynamically. The
service-oriented middle tier solves numerous issues that are problematic in a two-tier
architecture, as we learned from our experiences with a prototype in which the client
connected directly to the simulation.

Page 4 of 10

By exposing the “knobs” (control) and “dials” (status) of computational steering as operations
of a Web service, the protocol of computational steering is easily documented in WSDL,
made accessible in a multitude of different languages, and permits independent development
of steering clients. These clients may be stand-alone, web-based, or embedded in a Modular
Visualization Environment (such as AVS, Amira or Iris Explorer) and may be customised for
application-specific requirements. The mediating “Steering Grid Service” (SGS) acts as a
white board. The client pushes control commands to and pulls status information from the
SGS, while the application performs the inverse operations. This model facilitates
asynchronous messaging. The SGS is stateful and transient, with state and lifetime reflecting
the component being steered, and is a natural application for the service data constructs and
factory and lifetime management patterns provided by the Open Grid Services Infrastructure
(OGSI) [11]. Steering clients can either use the client-side part of the steering API to
communicate with the SGS, or directly drive operations on the SGS using standard Web
service methods. We implement the SGS in OGSI::Lite [12, 13], itself a lightweight Perl-
based implementation of OGSI. The easily satisfied dependencies of OGSI::Lite mean that it
can be deployed in user space on almost any system (including important platforms for which
Java is not available). Thus we can, and do, use this technology on grids that are based on
version 2 of the Globus Toolkit (GT2), and we sidestep the issue of needing to dynamically
deploy Grid services in someone else’s container.

Steering client

Steering GS

Steering library
Steering GS

Registry

Steering library

Visualisation

Application

PublishBind

Find

Publish
Bind

Connect

Data transfer

Figure 3: Schematic architecture of an archetypal RealityGrid configuration.

Although we have working solutions based on OGSI, we look forward to the Web Services
Resource Framework (WSRF) [14], which solves a problem for us. In principle, the
application and client should see different interfaces to the SGS (e.g. the operation to set the
value of a monitored parameter should be visible only to the application, not to the client);
WSRF allows us to define different Web service interfaces to the same stateful resource.

Our ability to deploy the SGS either on the same host as the simulation, or anywhere else on
the Grid, has helped us to circumvent various firewall problems. Firewall issues are another
reason why we use a whiteboard pattern instead of the OGSI notification mechanisms.

The registry in Figure 3 is implemented in OGSI::Lite using the OGSI service group
constructs. The registry is a persistent service that acts as a central point of contact for client,

Page 5 of 10

simulation and visualization to discover each other, and is essential for bootstrapping
communications.

The services that support the checkpoint tree are not shown in Figure 3. Each node in the tree
is implemented as a persistent, long-lived Grid service containing metadata about the
simulation, such as input decks, location of checkpoint files and so on. The persistence of the
tree is achieved by exploiting the ability of OGSI::Lite to mirror, transparently, the service
data of a Grid service in a database.

On-line, real-time visualization is an important adjunct for many steering scenarios, but we
avoid confusing the two, deliberately separating visualization from steering. Control and
status information are the province of steering. Visualization is concerned with the
consumption of samples emitted by the simulation. The reverse route can be used to emit
samples from the visualization system to the simulation, where it might be interpreted for
example as a new set of boundary conditions, as in NAMD [15] and VMD [16]. While we
regard this separation as being fundamental at an architectural level, we do not insist that the
same separation is reflected in user interfaces. Thus it is often desirable from an HCI
perspective to allow the user to steer a simulation from control panels integrated into a
Modular Visualization Environment, and conceptually it is attractive to think of the
simulation as being a data source at the beginning of some kind of extended visualization
pipeline. Indeed, we have designed our architecture to encourage such re-purposing.

All the communications with Web or Grid services in Figure 3 use SOAP over http or https as
the transport mechanism. The application communicates with the SGS using gSOAP within
the steering library. The volume of data transported in this way is fairly low, and the overhead
of SOAP is not significant for us — a client can poll the SGS many times a second. However,
the volume of data exchanged between simulation and visualization is much greater, and
high-performance transport mechanisms are needed. We provide several mechanisms, such
as: (a) writing to and reading from disk, relying on a shared file system or a daemon
responsible for transferring files from source to destination; or (b) direct process-to-process
communication using sockets. Our current implementation of (b) is based on Globus-IO, but
this introduces a dependency that complicates the process of building the steering library and
any applications that use it.

2.3 Run-time deployment and job management
We have endeavoured to separate the concerns of computational steering from the concerns of
how jobs and services are deployed. Thus a developer instrumenting a code for steering is
unaware of the existence of any remote services or visualization components; the developer
fulfils his or her contract with the library by providing through the API the information about
the state of the simulation that the library needs to do its job, and by carrying out operations
that affect the state of the simulation when instructed to do so by the library. Similarly, the
client-side part of the steering library is used within the generic steering client to discover,
connect to and interact with a steerable entity; but is completely unaware of whether the
simulation and visualization are running locally or remotely.

Yet simulations and visualizations must be launched, and services must be deployed. We do
this using a suite of scripts that use the command-line interfaces to the GRAM and GridFTP
components of the Globus Toolkit. We also provide a graphical tool, or “wizard”, that allows
the user to choose an initial condition (which can be done by editing the input deck, and/or
browsing the checkpoint tree and selecting a pre-existing checkpoint), choosing a
computational resource, launching the job (automatically starting the SGS), and starting the
steering client. The wizard also provides capabilities to select a visualization technique and

Page 6 of 10

visualization system, start the visualization component and connect it to the simulation. The
wizard can migrate a running job to a different resource on the Grid, which involves taking a
checkpoint, transferring the checkpoint files, and re-starting the application on the new host,
in a complex process that involves fifteen distinct services and twelve distinct hosts. The
wizard shells out to command-line scripts, which in general require some customisation for
each application, to accomplish these tasks. With the exception of Globus-IO, we do not
program to the Globus APIs directly.

Note that we do not use the MDS components of Globus (GIIS and GRIS). This is not
because of any doubt about the importance of such services — we view them as essential for
the long-term future of the Grid — but because our experiences with MDS as deployed on the
grids available to us give us reason to doubt the robustness of the services and the utility of
the information published through them. Instead, we maintain lists of computational and
visualization resources in client-side configuration files read by the wizard.

3 Practical experiences: TeraGyroid, TRICEPS and SC Global

3.1 The TeraGyroid testbed
The principle computational resources in the testbed are listed in Table 1. We also used a
number of visualization systems including SGI Onyx systems at Manchester, UCL, NCSA
and Phoenix (on loan from SGI and commissioned on site), and the TeraGrid visualization
cluster at Argonne. The RealityGrid registry ran on a Sony PlayStation 2 in Manchester. The
Globus Toolkit was installed on all systems, with various versions (2.2.3, 2.2.4, 2.4.3 and 3.1)
in use. Our use of Globus (GRAM, GridFTP and Globus-IO) exposed no incompatibilities
between these versions, but we note that the GT 3.1 installation included the GT 2
compatibility bundles.

Site Architecture Processors Peak (TF) Memory (TB)
HPCx (Daresbury) IBM Power 4 Regatta 1024 6.6 1.0
CSAR (Manchester) SGI Origin 3800 512 0.8 0.5 (shared)
CSAR (Manchester) SGI Altix 256 1.3 0.38
PSC (Pittsburgh) HP-Compaq 3000 6 3.0
NCSA (Urbana-Champaign) Itanium 2 512 2.0 4.0
SDSC (San Diego) Itanium 2 256 1.3 1.0

Table 1: Principle computational resources in the testbed

The testbed and networks are depicted schematically (in much simplified form) in Figure 4.
We knew from previous experience [17] that the bandwidth available to us from production
networks would seriously hamper our ability to migrate jobs — which requires transfer of
large (0.5 TB for our largest 10243 simulation) checkpoint files — across the Atlantic, and to
generate data on one continent and visualize it on the other. Fortunately, BT donated two 1
Gbps links from London to Amsterdam, which, in conjunction with the high bandwidth
SurfNet provision and the TeraGrid backbone, completed the circuit to the SC’03 exhibition
floor at Phoenix. Unfortunately, we only had two weeks to debug the network. HPCx, the
CSAR Origin 3800, and the visualization supercomputers in Manchester and UCL were all
“dual-homed”, connected simultaneously to the SuperJanet 4 academic backbone and the BT
provision via the experimental MB-NG (http://www.mb-ng.net) network. Complex routing
tables were required on the UK end, while route advertisement sufficed on the US end.

Scientists and developers collaborated using Access Grid nodes located in Boston, London,
Manchester, Martlesham, and Phoenix. The tiled display on the left of Figure 1 was rendered
in real time at the TeraGrid visualization cluster located at Argonne, using Chromium. The

Page 7 of 10

http://www.mb-ng.net/

display on the right was rendered, also in real time, on an SGI Onyx system in Manchester.
The visualizations are implemented using VTK with patches to enable automatic refresh
whenever a new sample arrives from the simulation. The video streams were multicast to
Access Grid using the FLXmitter library. SGI OpenGL VizServer™ was used to allow a
remote collaborator to take control of the visualization. When necessary, the steering client
was shared using VNC. An IRC back channel also proved invaluable. All Access Grid and
VizServer traffic was routed over production networks.

Visualization
Computation

Starlight (Chicago)

Netherlight
(Amsterdam)

BT provision

PSC

ANL

NCSA

Phoenix

Caltech

SDSC

UCL

Daresbury

Manchester

SJ4
MB-NG

Network PoP

Access Grid node

Service Registry

production
network

Dual-homed system

10 Gbps

2 x 1 Gbps

Figure 4: The testbed used in the TeraGyroid project

3.2 Lessons Learned
Inevitably, the application and visualization must be ported to, and deployed on, each
resource on the Grid where they are to be run. We do not find that Globus-based grids today
do much to facilitate this. Instead, the increasing variety of resources that the Grid makes
accessible means that users and developers are spending an ever-increasing fraction of their
time porting applications to new systems and configuring them for the vagaries of each.

Considerable negotiation was necessary to persuade TeraGrid sites to recognise user and host
certificates issued by the UK e-Science Certificate Authority (CA), and to persuade UK sites
to recognise the five different CAs used within TeraGrid. In our case, the agreement was
facilitated by a sense of common purpose. In general, however, establishing the necessary
trust relationships to federate two grids is a process that will scale poorly if every systems
administrator has to study the CP and CPS of every CA; there is a clear role here for Policy
Management Authorities (see http://www.gridpma.org).

It is normally the task of the RealityGrid migration wizard on the user’s laptop to initiate the
transfer of checkpoint files using the third-party file-transfer capability of GridFTP. This
proved problematic when one of the systems involved was dual-homed, and complicated by
the fact that the systems were not accessible from everywhere via their MB-NG addresses.
The problem could have been circumvented if GridFTP provided the ability to specify
different addresses for control and data channels. We worked around the problem by setting

Page 8 of 10

http://www.gridpma.org/

up a checkpoint transfer service on one of the dual-homed systems for which both networks
were visible. This transfer service was aware of which hosts were dual-homed, which
interface would provide the best bandwidth for each pair of endpoints, which host certificate
to associate with an interface for Globus authentication, which options to globus-url-copy
yielded the best performance, and which checkpoint replica was “closest” to the site where it
was required. The transfer service was implemented as a Perl script and invoked remotely
using globusrun, which introduced a significant start-up overhead over normal third-party
transfers.

It is often difficult to identify whether a problem is caused by middleware or networks. We
are used to the symptoms caused by the presence of firewalls, and were generally able to
resolve these speedily once the relevant administrators were identified. However, more
baffling problems arose. One problem, which manifested as an authentication failure, was
ultimately traced to a router unable to process jumbo frames. Another was traced to
inconsistent results of reverse DNS lookups on one of the TeraGrid systems. A third problem,
manifesting as grossly asymmetric performance between ftp get and put operations, was never
completely resolved, but MTU settings appear to have been implicated.

The maximum performance we achieved for trans-Atlantic file transfers during SC’03 was
about 600 Mbps, a respectable fraction of the theoretical upper limit of 1 Gbps. But for some
pairs of endpoints, the best we could achieve was a good deal less than this, for a variety of
reasons. UDP tests between UCL and Phoenix yielded >95% of the theoretical peak, which
suggests that there is still room for improvement in TCP/IP stacks and GridFTP.

In order for the simulation to exchange data with the visualization it is necessary for at least
one process of the simulation to establish a connection with the visualization system. This is
problematic on HPCx, where the back-end compute nodes are confined to a private network.
On other cluster systems, such as Lemieux at PSC or Newton at CSAR, only some nodes have
direct connections to the internet. In the latter case, it is possible, by arrangement with the
system administrator, to pin one process of the application to the node with internet
connectivity. In the former case, the only option is to forward internet connections via the
front-end machine or head node. On HPCx, the forwarding of connections was carried out
using bespoke software written by Stephen Booth at EPCC.

Even the simplest computational steering scenarios require co-allocation of computational and
visualization resources [18]. For a scheduled collaborative steering session, it is also
necessary to reserve these resources in advance at a time that suits the people involved. When
Access Grid is used to provide the collaborative environment, one usually needs to book the
physical rooms as well. Although some batch queuing systems support advance reservation,
such support is far from universal, and standard protocols for reservation are still lacking.
Making the necessary arrangements will continue to be problematic for some time to come.

4 Conclusions
In the TeraGyroid experiment, we studied the cubic gyroid mesophase of liquid crystals using
the largest set of lattice-Boltzmann (LB) simulations ever performed. By harnessing the
federated resources of the TeraGrid and the UK e-Science Grid and, by judicious use of all the
RealityGrid capabilities and grid computing infrastructure described here, the time taken to
obtain scientific results was massively reduced to just a few months. We have shown how
intercontinental grids enable new paradigms for collaborative computational science.
However, we find that the capabilities of today’s grids are rudimentary, and heroic efforts are
required to exploit them effectively.

Page 9 of 10

5 Acknowledgments
The TeraGyroid project was supported by the Engineering and Physical Sciences Research Council
(EPSRC) in the UK, and the National Science Foundation (NSF) in the USA. RealityGrid is an e-
Science pilot project funded by the EPSRC as part of the UK e-Science programme. We are indebted
to BT for donating the network connection from London to Amsterdam in order to connect with the
transatlantic network connection from SurfNet, to whom we are also grateful. We would especially
like to thank the hundreds of individuals in more than thirty institutions who helped to make
TeraGyroid a success. We regret that space restrictions do not permit us to list them all here.

6 References
[1] N. González-Segredo, M. Nekovee & P. V. Coveney, Phys. Rev. E 67, 046304 (2003); M. Nekovee and P.

V. Coveney, J. Am. Chem. Soc. 123, 12380 (2001).
[2] N. González-Segredo & P. V. Coveney, “Self-assembly of the gyroid cubic mesophase: lattice-Boltzmann

simulations”, Europhys. Lett. (in press, 2004) ; N. González-Segredo and P. V. Coveney, “Coarsening
dynamics of ternary amphiphilic fluids and the self-assembly of the gyroid and sponge mesophases: lattice-
Boltzmann simulations” Phys. Rev. E, (in press, 2004).

[3] H. Chen, B. M. Boghosian, P. V. Coveney & M. Nekovee, Proc. R. Soc. London A 456, 2043 (2000).
[4] P. J. Love, M. Nekovee, P. V. Coveney, J. Chin, N. González-Segredo & J. M. R. Martin, Comp. Phys.

Commun. 153, Issue 3, 340-358 (2003).
[5] J. M. Brooke, P. V. Coveney, J. Harting, S. Jha, S. M. Pickles, R. L. Pinning and A. R. Porter,

Computational Steering in RealityGrid, Proceedings of the UK e-Science All Hands Meeting, September 2-
4, 2003 (http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/179.pdf).

[6] J. Chin, J. Harting, S. Jha, P. V. Coveney, A. R. Porter and S. M. Pickles, “Steering in computational
science: mesoscale modelling and simulation”, Contemporary Physics 44, 417-434, 2003.

[7] Stephen M. Pickles, Peter V Coveney and Bruce M Boghosian, Transcontinental RealityGrids for
Interactive Collaborative Exploration of Parameter Space (TRICEPS), Winner of SC’03 HPC Challenge
competition in the category “Most Innovative Data-Intensive Application”, (http://www.sc-
conference.org/sc2003/inter_cal/inter_cal_detail.php?eventid=10701#5).

[8] Mathilde Romberg, John Brooke, Thomas Eickermann, Uwe Woessner, Bruce Boghosian, Maziar Nekovee,
Peter Coveney, Application Steering in a Collaborative Environment, SC Global conference, November,
2003 (http://www.sc-conference.org/sc2003/inter_cal/inter_cal_detail.php?eventid=10719). A Windows
Media Stream archive of this session is available at mms://winmedia.internet2.edu/VB-on-
Demand/AppSteering.asf.

[9] Stephen Pickles, Robin Pinning, Andrew Porter, Graham Riley, Rupert Ford, Ken Mayes, David Snelling,
Jim Stanton, Steven Kenny, Shantenu Jha, The RealityGrid Computational Steering API, Version 1.0, 9
July 2003, unpublished.

[10] K. W. Brodlie, L. A. Brankin, G. A. Banecki, A. Gay, A. Poon and H. Wright. GRASPARC: A problem
solving environment integrating computation and visualization. In G. M. Nielson and D. Bergeron, editors,
Proceedings of IEEE Visualization 93 Conference, p. 102. IEEE Computer Society Press, 1993.

[11] S. Tuecke et al., Open Grid Services Infrastructure (OGSI) (draft). OGSI Working Group of the Global
Grid Forum, 2003 (http://www.gridforum.org/Meetings/ggf7/drafts/draft-ggf-ogsi-gridservice-23_2003-02-
17.pdf).

[12] M. Mc Keown, OGSI::Lite – a Perl implementation of an OGSI-compliant Grid Services Container.
(http://www.sve.man.ac.uk/Research/AtoZ/ILCT).

[13] J. Chin & P.V. Coveney, Towards tractable toolkits for the Grid: a plea for lightweight, usable middleware,
2003 (http://www.realitygrid.org/lgpaper21.htm).

[14] Ian Foster et al., Modeling Stateful Resources with Web Services, January 2004,
(http://www.globus.org/wsrf/ModelingState.pdf).

[15] Laxmikant Kal, Robert Skeel, Milind Bhandarkar, Robert Brunner, Attila Gursoy, Neal Krawetz, James
Phillips, Aritomo Shinozaki, Krishnan Varadarajan, and Klaus Schulten. NAMD2: Greater scalability for
parallel molecular dynamics. Journal of Computational Physics, 151:283-312, 1999.

[16] Humphrey, W., Dalke, A. and Schulten, K., “VMD - Visual Molecular Dynamics”, J. Molec. Graphics,
1996, vol. 14, pp. 33-38.

[17] S.M. Pickles, J.M. Brooke, F. Costen, E. Gabriel, M. Mueller, M. Resch, Metacomputing across
intercontinental networks, Future Generation Computer Systems 17 (2001) 911-918.

[18] Karl Czajkowski, Stephen Pickles, Jim Pruyne, Volker Sander, Usage Scenarios for a Grid Resource
Allocation Agreement Protocol, GGF Memo, February 2003.

Page 10 of 10

http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/179.pdf)
http://www.sc-conference.org/sc2003/inter_cal/inter_cal_detail.php?eventid=10719
http://www.gridforum.org/Meetings/ggf7/drafts/draft-ggf-ogsi-gridservice-23_2003-02-17.pdf
http://www.gridforum.org/Meetings/ggf7/drafts/draft-ggf-ogsi-gridservice-23_2003-02-17.pdf
http://www.sve.man.ac.uk/Research/AtoZ/ILCT
http://www.realitygrid.org/lgpaper21.htm
http://www.globus.org/wsrf/ModelingState.pdf

	Introduction
	Computational Steering and Parameter Space Exploration
	The RealityGrid Steering Library and Toolkit
	The Architecture of Steering
	Run-time deployment and job management

	Practical experiences: TeraGyroid, TRICEPS and SC Global
	The TeraGyroid testbed
	Lessons Learned

	Conclusions
	Acknowledgments
	References

