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The TeraGyroid experiment at SC’03 addressed a large-scale problem of genuine scientific interest 
at the same time as showing how intercontinental grids enable new paradigms for collaborative 
computational science that can dramatically reduce the time to insight. TeraGyroid used 
computational steering to accelerate the exploration of parameter space in condensed matter 
simulations. The scientific objective was to study the self-assembly, defect pathways and 
dynamics of liquid crystalline cubic gyroid mesophases using the largest set of lattice-Boltzmann 
(LB) simulations ever performed, involving in some cases lattices of over one billion sites and for 
highly extended simulation times. We describe the application in sufficient detail to reveal how it 
uses the grid to support interactions between its distributed parts, where the interfaces exist 
between the application and the middleware infrastructure, what grid services and capabilities are 
used, and why important design decisions were made. We also describe how the resources of high-
end computing services were federated with the UK e-Science Grid and the US TeraGrid to form 
the TeraGyroid testbed, and summarise the “lessons learned” during the experiment. 

1 Introduction 
The TeraGyroid project was an ambitious experiment to investigate new opportunities for 
computational science created by the Grid — for example, demonstrating new scientific 
capabilities and international collaborative working — at the same time as establishing 
technical collaborations to support the development of national and international Grids. High-
end computing resources were federated with the UK e-Science Grid and the US TeraGrid, 
and harnessed in an accelerated programme of computational science that peaked during the 
Supercomputing 2003 conference (SC’03). The application was provided by the RealityGrid 
project (http://www.realitygrid.org). 

The scientific objective of TeraGyroid was to study the self-assembly, defect pathways and 
dynamics of liquid crystalline cubic gyroid mesophases using lattice-Boltzmann techniques 
[1, 2, 3, 4]. This was achieved through the largest set of lattice-Boltzmann (LB) simulations 
ever performed, involving in some cases lattices of over one billion sites and highly extended 
simulation times. The gyroid phase was only very recently discovered in lattice-Boltzmann 
simulations using the LB3D code [2]; its stability is strongly dependent on minimisation of 
finite size effects (caused by the imposition of artificial three-dimensional periodic boundary), 
implying the need to perform “large” simulations (by current standards), on lattices of at least 
1283 sites. However, then one observes the presence of local, highly crystalline domains of 
the fluid at varying orientations, between which there are domain boundaries and a 
concomitant dynamics of defects. To study the dynamical properties of these defects, which 
inform the macroscopic properties of the fluid, one needs to perform extremely large 
simulations in an essentially finite-size-effect free environment, and for long enough to study 
the way the domains interact.  Thus, not only the size of these lattice-Boltzmann simulations 
but also their duration is quite unprecedented — the computational effort to perform these 
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studies must be at least on the scale of what we had available within the TeraGyroid project 
— and, by judicious use of all the RealityGrid capabilities and grid computing infrastructure 
described below, the time taken to obtain scientific results has been massively reduced to just 
a few months. Very little is known about the large scale fluid properties of these amphiphilic 
liquid crystalline systems, either experimentally or theoretically. Some of the simulations, and 
the detailed analysis of our results, are still ongoing at the time of writing this paper and will 
be reported elsewhere. 

A central theme of RealityGrid is the facilitation of distributed and collaborative exploration 
of parameter space through computational steering and on-line, high-end visualization [5, 6]. 
The TeraGyroid experiment realised this theme in dramatic fashion at SC’03. A series of 
demonstrations under the guise of “Transcontinental RealityGrids for Interactive 
Collaborative Exploration of Parameter Space” (TRICEPS), won the HPC Challenge 
competition in the category of “Most Innovative Data Intensive Application” [7]. The same 
work was also demonstrated live before an Access Grid audience during the SC Global 
showcase “Application Steering in a Collaborative Environment” [8]. A family of simulations 
at different resolutions were spawned and steered into different regions of parameter space by 
geographically distributed scientists on both sides of the Atlantic. The collaborative 
environment of Access Grid was essential, not only for project planning, but also for 
managing the distributed experiment and discussing the evolution of the simulations. Figure 1 
shows a snapshot of the Access Grid screen as seen in Phoenix during SC Global. 
 

 
Figure 1: Access Grid screen as seen in Phoenix during the SC Global session on application steering. 

The remainder of this paper is organised as follows. In section 2, we describe RealityGrid’s 
approach to computational steering and its application to the efficient exploration of 
parameter space. We describe the architecture in sufficient detail to reveal how the Grid is 
used to support interactions between the parts of the distributed application, where the 
interfaces exist between the parts of the application and the middleware infrastructure, what 
Grid services and capabilities are used, and why important design decisions were made. In 
section 3, we describe the TeraGyroid testbed, its resources and networks, and the “lessons 
learned” during the experiment: problems encountered, solutions adopted and issues 
outstanding. 
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2 Computational Steering and Parameter Space Exploration 
Computational steering — the ability to interact with the simulation while it is running — was 
central to the methodology of the TeraGyroid project. By monitoring the progress of 
simulations, aided by on-line visualization, we avoid losing cycles to redundant computation 
or even doing the wrong calculation. By tuning the value of steerable parameters, we quickly 
learn how the simulation responds to perturbations and use this insight to design subsequent 
computational experiments. Mapping out the parameter space of the model under study on 
relatively coarse lattices (643 and 1283) informs the choices for parameter values for the most 
expensive simulations on the largest lattices (5123, 10243). We now describe our 
computational steering technologies and how these facilitate parameter space exploration. 

2.1 The RealityGrid Steering Library and Toolkit 
We instrument our applications for computational steering using the RealityGrid steering 
library [9]. A fully instrumented application supports the following operations: 

• Pause, resume, detach and stop 
• Set values of steerable parameters 
• Report values of monitored (read-only) parameters 
• Emit "samples" to remote systems for e.g. on-line visualization 
• Consume "samples" from remote systems 
• Checkpoint and windback. 

Emit and consume semantics are used because the application should not be aware of the 
destination or source of the data. Windback here means revert to the state captured in a 
previous checkpoint without stopping the application. In RealityGrid, the act of taking a 
checkpoint is the responsibility of the application. LB3D supports malleable checkpoints, by 
which we mean that the application can be restarted on a different number of processors on a 
system of different architecture. 

In designing and implementing the steering library, we have aimed to enable existing parallel 
programs (often written in Fortran90 or C and designed for multi-processor supercomputers) 
to be made steerable with a minimum of effort.  The steering library is implemented in C, has 
both Fortran 90 and C bindings, and permits any parallelisation technique (such as MPI or 
OpenMP), with the proviso that the application developer assumes responsibility for 
communicating any changes resulting from steering activity to all processes. The steering 
library requires the application to register both monitored (read-only) and steerable (changed 
only through user interaction) parameters.  Similarly, the user may instruct the application to 
take a checkpoint or restart from an existing one. We use a system of reverse communication 
with the application.  This means that, for actions such as emit, consume, checkpoint and 
windback, the library simply notifies the application of what it needs to do.  It is then the 
application’s responsibility to carry out the task, possibly using utility routines from the 
steering library. 

Using the client-side part of the library, a generic steering client has been implemented using 
C++ and the Qt GUI toolkit; web-based and PDA clients are under development. The client 
discovers the commands supported by the application and its monitored/steered parameters as 
part of the connection process, and constructs the necessary widgets on the fly. 

Checkpoint/recovery is a key piece of functionality for computational steering. Sometimes the 
scientist realises that an interesting transition has occurred, and wants to study the transition 
in more detail; this can be accomplished by winding back the simulation to an earlier 
checkpoint, and increasing the frequency of sample emissions for on-line visualization. 
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An even more compelling scenario arises when computational steering is used for parameter 
space exploration, as in TRICEPS. A scientist may be studying a physical system which is 
suspected to contain a rich phase structure, but does not have sufficient resources available to 
embark on a brute-force exploration of its multi-dimensional parameter space. Instead, the 
scientist uses computational steering to begin mapping out this space. The simulation evolves 
under an initial choice of parameters until the first signs of emergent structure are seen, and a 
checkpoint is taken. The simulation evolves further, until the scientist recognises that the 
system is beginning to equilibrate, and takes another checkpoint. Suspecting that further 
equilibration will not yield any new insight, the scientist now rewinds to an earlier 
checkpoint, chooses a different set of parameters, and observes the system’s evolution in a 
new direction. In this way, the scientist assembles a tree of checkpoints — our use of 
checkpoint trees was inspired by GRASPARC [10] — that sample different regions of the 
parameter space under study, while carefully husbanding his or her allocation of computer 
time. Different branches of the tree can be explored in parallel. The scientist can always 
revisit a particular branch of the tree at a later time should this prove necessary. This process 
is illustrated in Figure 2, in which a Lattice-Boltzmann simulation is used to study the phase 
structure of a mixture of fluids. Here one dimension of the parameter space is explored by 
varying the surfactant-surfactant coupling constant gss. 

 

 
Figure 2. Parameter space exploration gives rise to a tree of checkpoints. 

2.2 The Architecture of Steering 
Figure 3 shows a schematic representation of our three-tier architecture for computational 
steering for the case in which a visualization component is connected to the simulation 
component. One or both of these components may be steered using the steering client. Both 
components are started independently and can be attached and detached dynamically. The 
service-oriented middle tier solves numerous issues that are problematic in a two-tier 
architecture, as we learned from our experiences with a prototype in which the client 
connected directly to the simulation.  
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By exposing the “knobs” (control) and “dials” (status) of computational steering as operations 
of a Web service, the protocol of computational steering is easily documented in WSDL, 
made accessible in a multitude of different languages, and permits independent development 
of steering clients. These clients may be stand-alone, web-based, or embedded in a Modular 
Visualization Environment (such as AVS, Amira or Iris Explorer) and may be customised for 
application-specific requirements. The mediating “Steering Grid Service” (SGS) acts as a 
white board. The client pushes control commands to and pulls status information from the 
SGS, while the application performs the inverse operations. This model facilitates 
asynchronous messaging. The SGS is stateful and transient, with state and lifetime reflecting 
the component being steered, and is a natural application for the service data constructs and 
factory and lifetime management patterns provided by the Open Grid Services Infrastructure 
(OGSI) [11]. Steering clients can either use the client-side part of the steering API to 
communicate with the SGS, or directly drive operations on the SGS using standard Web 
service methods. We implement the SGS in OGSI::Lite [12, 13], itself a lightweight Perl-
based implementation of OGSI. The easily satisfied dependencies of OGSI::Lite mean that it 
can be deployed in user space on almost any system (including important platforms for which 
Java is not available). Thus we can, and do, use this technology on grids that are based on 
version 2 of the Globus Toolkit (GT2), and we sidestep the issue of needing to dynamically 
deploy Grid services in someone else’s container. 

Steering client

Steering GS

Steering library
Steering GS

Registry

Steering library

Visualisation

Application

PublishBind

Find

Publish
Bind

Connect

Data transfer

 
Figure 3: Schematic architecture of an archetypal RealityGrid configuration. 

Although we have working solutions based on OGSI, we look forward to the Web Services 
Resource Framework (WSRF) [14], which solves a problem for us. In principle, the 
application and client should see different interfaces to the SGS (e.g. the operation to set the 
value of a monitored parameter should be visible only to the application, not to the client); 
WSRF allows us to define different Web service interfaces to the same stateful resource.  

Our ability to deploy the SGS either on the same host as the simulation, or anywhere else on 
the Grid, has helped us to circumvent various firewall problems. Firewall issues are another 
reason why we use a whiteboard pattern instead of the OGSI notification mechanisms. 

The registry in Figure 3 is implemented in OGSI::Lite using the OGSI service group 
constructs. The registry is a persistent service that acts as a central point of contact for client, 
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simulation and visualization to discover each other, and is essential for bootstrapping 
communications. 

The services that support the checkpoint tree are not shown in Figure 3. Each node in the tree 
is implemented as a persistent, long-lived Grid service containing metadata about the 
simulation, such as input decks, location of checkpoint files and so on. The persistence of the 
tree is achieved by exploiting the ability of OGSI::Lite to mirror, transparently, the service 
data of a Grid service in a database. 

On-line, real-time visualization is an important adjunct for many steering scenarios, but we 
avoid confusing the two, deliberately separating visualization from steering. Control and 
status information are the province of steering. Visualization is concerned with the 
consumption of samples emitted by the simulation. The reverse route can be used to emit 
samples from the visualization system to the simulation, where it might be interpreted for 
example as a new set of boundary conditions, as in NAMD [15] and VMD [16]. While we 
regard this separation as being fundamental at an architectural level, we do not insist that the 
same separation is reflected in user interfaces. Thus it is often desirable from an HCI 
perspective to allow the user to steer a simulation from control panels integrated into a 
Modular Visualization Environment, and conceptually it is attractive to think of the 
simulation as being a data source at the beginning of some kind of extended visualization 
pipeline. Indeed, we have designed our architecture to encourage such re-purposing. 

All the communications with Web or Grid services in Figure 3 use SOAP over http or https as 
the transport mechanism. The application communicates with the SGS using gSOAP within 
the steering library. The volume of data transported in this way is fairly low, and the overhead 
of SOAP is not significant for us — a client can poll the SGS many times a second. However, 
the volume of data exchanged between simulation and visualization is much greater, and 
high-performance transport mechanisms are needed. We provide several mechanisms, such 
as: (a) writing to and reading from disk, relying on a shared file system or a daemon 
responsible for transferring files from source to destination; or (b) direct process-to-process 
communication using sockets. Our current implementation of (b) is based on Globus-IO, but 
this introduces a dependency that complicates the process of building the steering library and 
any applications that use it. 

2.3 Run-time deployment and job management 
We have endeavoured to separate the concerns of computational steering from the concerns of 
how jobs and services are deployed. Thus a developer instrumenting a code for steering is 
unaware of the existence of any remote services or visualization components; the developer 
fulfils his or her contract with the library by providing through the API the information about 
the state of the simulation that the library needs to do its job, and by carrying out operations 
that affect the state of the simulation when instructed to do so by the library. Similarly, the 
client-side part of the steering library is used within the generic steering client to discover, 
connect to and interact with a steerable entity; but is completely unaware of whether the 
simulation and visualization are running locally or remotely. 

Yet simulations and visualizations must be launched, and services must be deployed. We do 
this using a suite of scripts that use the command-line interfaces to the GRAM and GridFTP 
components of the Globus Toolkit. We also provide a graphical tool, or “wizard”, that allows 
the user to choose an initial condition (which can be done by editing the input deck, and/or 
browsing the checkpoint tree and selecting a pre-existing checkpoint), choosing a 
computational resource, launching the job (automatically starting the SGS), and starting the 
steering client. The wizard also provides capabilities to select a visualization technique and 
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visualization system, start the visualization component and connect it to the simulation. The 
wizard can migrate a running job to a different resource on the Grid, which involves taking a 
checkpoint, transferring the checkpoint files, and re-starting the application on the new host, 
in a complex process that involves fifteen distinct services and twelve distinct hosts. The 
wizard shells out to command-line scripts, which in general require some customisation for 
each application, to accomplish these tasks. With the exception of Globus-IO, we do not 
program to the Globus APIs directly. 

Note that we do not use the MDS components of Globus (GIIS and GRIS). This is not 
because of any doubt about the importance of such services — we view them as essential for 
the long-term future of the Grid — but because our experiences with MDS as deployed on the 
grids available to us give us reason to doubt the robustness of the services and the utility of 
the information published through them. Instead, we maintain lists of computational and 
visualization resources in client-side configuration files read by the wizard. 

3 Practical experiences: TeraGyroid, TRICEPS and SC Global 

3.1 The TeraGyroid testbed 
The principle computational resources in the testbed are listed in Table 1. We also used a 
number of visualization systems including SGI Onyx systems at Manchester, UCL, NCSA 
and Phoenix (on loan from SGI and commissioned on site), and the TeraGrid visualization 
cluster at Argonne. The RealityGrid registry ran on a Sony PlayStation 2 in Manchester. The 
Globus Toolkit was installed on all systems, with various versions (2.2.3, 2.2.4, 2.4.3 and 3.1) 
in use. Our use of Globus (GRAM, GridFTP and Globus-IO) exposed no incompatibilities 
between these versions, but we note that the GT 3.1 installation included the GT 2 
compatibility bundles. 

Site Architecture Processors Peak (TF) Memory (TB) 
HPCx (Daresbury) IBM Power 4 Regatta 1024 6.6 1.0 
CSAR (Manchester) SGI Origin 3800 512 0.8 0.5 (shared)  
CSAR (Manchester) SGI Altix 256 1.3 0.38 
PSC (Pittsburgh) HP-Compaq 3000 6 3.0 
NCSA (Urbana-Champaign) Itanium 2 512 2.0 4.0 
SDSC (San Diego) Itanium 2 256 1.3 1.0 

Table 1: Principle computational resources in the testbed 

The testbed and networks are depicted schematically (in much simplified form) in Figure 4. 
We knew from previous experience [17] that the bandwidth available to us from production 
networks would seriously hamper our ability to migrate jobs — which requires transfer of 
large (0.5 TB for our largest 10243 simulation) checkpoint files — across the Atlantic, and to 
generate data on one continent and visualize it on the other. Fortunately, BT donated two 1 
Gbps links from London to Amsterdam, which, in conjunction with the high bandwidth 
SurfNet provision and the TeraGrid backbone, completed the circuit to the SC’03 exhibition 
floor at Phoenix. Unfortunately, we only had two weeks to debug the network. HPCx, the 
CSAR Origin 3800, and the visualization supercomputers in Manchester and UCL were all 
“dual-homed”, connected simultaneously to the SuperJanet 4 academic backbone and the BT 
provision via the experimental MB-NG (http://www.mb-ng.net) network. Complex routing 
tables were required on the UK end, while route advertisement sufficed on the US end. 

Scientists and developers collaborated using Access Grid nodes located in Boston, London, 
Manchester, Martlesham, and Phoenix. The tiled display on the left of Figure 1 was rendered 
in real time at the TeraGrid visualization cluster located at Argonne, using Chromium. The 
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display on the right was rendered, also in real time, on an SGI Onyx system in Manchester. 
The visualizations are implemented using VTK with patches to enable automatic refresh 
whenever a new sample arrives from the simulation.  The video streams were multicast to 
Access Grid using the FLXmitter library. SGI OpenGL VizServer™ was used to allow a 
remote collaborator to take control of the visualization. When necessary, the steering client 
was shared using VNC. An IRC back channel also proved invaluable. All Access Grid and 
VizServer traffic was routed over production networks.  

Visualization
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Starlight (Chicago)

Netherlight
(Amsterdam)

BT provision
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Phoenix

Caltech

SDSC
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Daresbury
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Network PoP
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Service Registry
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network

Dual-homed system

10 Gbps

2 x 1 Gbps

 
Figure 4:  The testbed used in the TeraGyroid project 

3.2 Lessons Learned 
Inevitably, the application and visualization must be ported to, and deployed on, each 
resource on the Grid where they are to be run. We do not find that Globus-based grids today 
do much to facilitate this. Instead, the increasing variety of resources that the Grid makes 
accessible means that users and developers are spending an ever-increasing fraction of their 
time porting applications to new systems and configuring them for the vagaries of each. 

Considerable negotiation was necessary to persuade TeraGrid sites to recognise user and host 
certificates issued by the UK e-Science Certificate Authority (CA), and to persuade UK sites 
to recognise the five different CAs used within TeraGrid. In our case, the agreement was 
facilitated by a sense of common purpose. In general, however, establishing the necessary 
trust relationships to federate two grids is a process that will scale poorly if every systems 
administrator has to study the CP and CPS of every CA; there is a clear role here for Policy 
Management Authorities (see http://www.gridpma.org). 

It is normally the task of the RealityGrid migration wizard on the user’s laptop to initiate the 
transfer of checkpoint files using the third-party file-transfer capability of GridFTP. This 
proved problematic when one of the systems involved was dual-homed, and complicated by 
the fact that the systems were not accessible from everywhere via their MB-NG addresses. 
The problem could have been circumvented if GridFTP provided the ability to specify 
different addresses for control and data channels. We worked around the problem by setting 
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up a checkpoint transfer service on one of the dual-homed systems for which both networks 
were visible. This transfer service was aware of which hosts were dual-homed, which 
interface would provide the best bandwidth for each pair of endpoints, which host certificate 
to associate with an interface for Globus authentication, which options to globus-url-copy 
yielded the best performance, and which checkpoint replica was “closest” to the site where it 
was required. The transfer service was implemented as a Perl script and invoked remotely 
using globusrun, which introduced a significant start-up overhead over normal third-party 
transfers. 

It is often difficult to identify whether a problem is caused by middleware or networks. We 
are used to the symptoms caused by the presence of firewalls, and were generally able to 
resolve these speedily once the relevant administrators were identified. However, more 
baffling problems arose. One problem, which manifested as an authentication failure, was 
ultimately traced to a router unable to process jumbo frames. Another was traced to 
inconsistent results of reverse DNS lookups on one of the TeraGrid systems. A third problem, 
manifesting as grossly asymmetric performance between ftp get and put operations, was never 
completely resolved, but MTU settings appear to have been implicated. 

The maximum performance we achieved for trans-Atlantic file transfers during SC’03 was 
about 600 Mbps, a respectable fraction of the theoretical upper limit of 1 Gbps. But for some 
pairs of endpoints, the best we could achieve was a good deal less than this, for a variety of 
reasons. UDP tests between UCL and Phoenix yielded >95% of the theoretical peak, which 
suggests that there is still room for improvement in TCP/IP stacks and GridFTP.  

In order for the simulation to exchange data with the visualization it is necessary for at least 
one process of the simulation to establish a connection with the visualization system. This is 
problematic on HPCx, where the back-end compute nodes are confined to a private network. 
On other cluster systems, such as Lemieux at PSC or Newton at CSAR, only some nodes have 
direct connections to the internet. In the latter case, it is possible, by arrangement with the 
system administrator, to pin one process of the application to the node with internet 
connectivity. In the former case, the only option is to forward internet connections via the 
front-end machine or head node. On HPCx, the forwarding of connections was carried out 
using bespoke software written by Stephen Booth at EPCC.  

Even the simplest computational steering scenarios require co-allocation of computational and 
visualization resources [18]. For a scheduled collaborative steering session, it is also 
necessary to reserve these resources in advance at a time that suits the people involved. When 
Access Grid is used to provide the collaborative environment, one usually needs to book the 
physical rooms as well. Although some batch queuing systems support advance reservation, 
such support is far from universal, and standard protocols for reservation are still lacking. 
Making the necessary arrangements will continue to be problematic for some time to come. 

4 Conclusions 
In the TeraGyroid experiment, we studied the cubic gyroid mesophase of liquid crystals using 
the largest set of lattice-Boltzmann (LB) simulations ever performed. By harnessing the 
federated resources of the TeraGrid and the UK e-Science Grid and, by judicious use of all the 
RealityGrid capabilities and grid computing infrastructure described here, the time taken to 
obtain scientific results was massively reduced to just a few months. We have shown how 
intercontinental grids enable new paradigms for collaborative computational science. 
However, we find that the capabilities of today’s grids are rudimentary, and heroic efforts are 
required to exploit them effectively. 
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