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Chirality and domain growth in the
gyroid mesophase

BY JONATHAN CHIN AND PETER V. COVENEY*

Department of Chemistry, Centre for Computational Science, University
College London, 20 Gordon Street, London WC1H 0AJ, UK

We describe the first dynamical simulations of domain growth during the self-assembly
of the gyroid mesophase from a ternary amphiphilic mixture, using the lattice Boltzmann
method. The gyroid is a chiral structure; we demonstrate that, for a symmetric
amphiphile with no innate preference for left- or right-handed morphologies, the self-
assembly process may give rise to a racemic mixture of domains. We use measurements
of the averaged mean curvature to analyse the behaviour of domain walls, and suggest
that diffusive domain growth may be present in this system.
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1. Introduction

Emergent phenomena occur when many elements, each with very simple
behaviour, display unexpectedly complex behaviour when gathered together in
large numbers (Coveney & Skår 2003). Such behaviour gives rise to a vast
number of patterns and structures in nature. A good example of this is provided
by amphiphile molecules, which, despite having a very simple structure in
general, can spontaneously assemble into a wide variety of ordered structures; in
particular, the membranes of living cells are constructed from these molecules.

One of these structures is called the gyroid mesophase, whose properties, once
assembled, have been studied experimentally and theoretically. However, little is
understood about the process of self-assembly. Using a lattice Boltzmann model
which can capture both surfactant dynamics and fluid flow effects, we are able to
simulate the self-assembly of such a phase. In particular, we demonstrate below
that the self-assembly process of the gyroid mesophase can give rise to
imperfections or defects in its structure.
2. Amphiphile mesophases

The word amphiphile comes from the Greek words amfi, for ‘both’, and filein,
‘to like’, and means a kind of molecule which is composed of two parts, each
attracted to a different species. Soap is a commonly encountered amphiphile:
soap molecules are composed of a polar head group which is hydrophilic, or
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attracted to water, and a long hydrophobic or lipophilic tail group which is
repelled by water and attracted to oil. In a mixture of oil, water and soap, the
soap molecules are strongly attracted to the interface between the oil and the
water, allowing them to sit in the minimal-energy configuration with the head
group facing towards water and the tail group facing into the oil. This
tendency to migrate towards interfaces is why such molecules are commonly
termed surfactants, or surface-active agents. Surfactants have immense
industrial importance, mainly due to their tendency to sit at interfaces and
thereby reduce surface tension; this is the principle by which all detergents
work.

While a solution of surfactant inwater is easily prepared in the kitchen sink, such
solutions show very rich and complicated behaviour, summarized by, for example,
Gompper&Schick (1994) andLangevin (1999), or the reviews of Seddon&Templer
(1993, 1995). In a very dilute solution, amphiphilemolecules exist asmonomers, but
beyond a certain critical concentration, they may assemble into a variety of
morphologies, such as spherical, wormlike, or branching micellar clusters, or
bicontinuous structures, comprised of interpenetrating networks of oil and water
channels separated by a monolayer of amphiphile. The networks may be isotropic
sponges with no long-range order, but can also form liquid crystalline structures
with translational symmetry. This behaviour depends on many variables, such as
temperature, surfactant volume fraction, non-polar chain length, polar head-group
strength (which, in turn, depends on factors such as pH and ionic concentration)
and the form of the interaction between tail groups, between head and tail groups
and between head groups.
(a ) The Canham–Helfrich Hamiltonian

A surfactant molecule in a monolayer will have a variety of lateral forces
acting on it. Repulsion between tail groups and between head groups acts to push
molecules apart; surface tension effects act to pull them together. The effects of
these forces can often be difficult to separate, and the nature of the individual
forces is still poorly understood (Seddon & Templer 1995).

A useful idealization of this system is to think of it as being composed of an oil-
filled region, a separate water-filled region and a surfactant membrane separating
the two. The oil and water regions may have a highly tortuous morphology,
giving rise to a correspondingly complicated shape for the surfactant membrane.
However, the complicated interactions between molecules can now be described
in terms of their net effect on the surface, and, in particular, their effect on its
curvature.

Consider a hypothetical symmetric amphiphile, whose head and tail groups
are of the same size and exert the same magnitude of forces. At an interface, the
ideal configuration of amphiphile molecules is planar; by symmetry, there is no
innate preference for the interface to curve in one direction or another. If one
bends the surface, then head groups will be pushed together and tail groups
pulled apart, or vice versa; this incurs an energy cost. At any point on a surface,
maximum and minimum curvatures can be found, corresponding to the
minimum and maximum radii of curvature, respectively; the sign of the
curvature indicates its direction. These are called the principal curvatures c1 and c2;
the mean and Gaussian curvatures are defined as HZðcC1Cc2Þ=2 and KZc1c2,
RSPA 20061741—8/6/2006—22:15—SRIKANTH—215166—XML RSA – pp. 1–27
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Figure 1. Three common cubic triply periodic minimal surfaces. (a) The P, or ‘plumber’s
nightmare’ surface. (b) The D, or ‘diamond’ surface, so called because each labyrinth has the same
structure as the carbon atoms in a diamond crystal (Hyde 1989). (c) The G, or ‘gyroid’ surface.
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respectively. The free-energy cost of curvature at a point on an interface was
characterized by Canham and Helfrich (Canham 1970):

gcurv Z 2kðHKH0Þ2 C �kK ; ð2:1Þ

where k is called the splay curvaturemodulus and �k is the saddle splaymodulus. This is
integrated over the interfacial surface to find the Hamiltonian for the complete
system. The Helfrich Hamiltonian, which describes the energetics of a fictional
surface of zero thickness (Schröder et al. 2004), is still far from the full story for
surfactants; packing frustration andhydrocarbon chain stretching are important, for
example, in the inverse hexagonal wormlike micellar phases (Seddon & Templer
1993). However, it is sufficient to predict many of the possible mesophase
morphologies.
(b ) Bicontinuous triply periodic minimal surface phases

The existence of bicontinuous phases was first suggested by Scriven (1976). In
these phases, the amphiphile surface must both extend throughout space and
minimize its curvature energy. These constraints are satisfied by a class of
structures known as triply periodic minimal surfaces (TPMS). A ‘minimal
surface’ has zero mean curvature and negative Gaussian curvature at all points; a
TPMS is a minimal surface with cubic symmetry, repeating in the X, Y and Z
directions. A brief history of the TPMS is given by Schwarz & Gompper (2002);
until 1970, only five TPMS were known, discovered by H. A. Schwarz and his
students in the late nineteenth century. Schoen (1970) discovered 12 more,
describing them in a NASA technical report. Little attention was paid to the new
surfaces, until their existence was rigorously proven by Karcher, who discovered
the existence of others in addition (Karcher & Polthier 1996). Further theoretical
details of various aspects of periodic minimal surfaces are described in the
literature (Mackay 1985; Góźdź & Hołyst 1996; Karcher & Polthier 1996;
Klinowski et al. 1996; Hyde & Ramsden 2000; Hyde & Schroeder 2003; Lord &
Mackay 2003; Enlow et al. 2004).

Three surfaces of particular interest in surfactant morphologies are called the
P, D and G surfaces (figure 1). P and D were discovered by H. A. Schwarz; G, the
‘gyroid’, was discovered by Schoen. Fogden & Hyde (1999) give a detailed
analysis of the P, D and G surfaces. An analytical form for these three surfaces
RSPA 20061741—8/6/2006—22:15—SRIKANTH—215166—XML RSA – pp. 1–27
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(among others) is known in terms of the Enneper–Weierstrass representation
(Fogden & Hyde 1999; Gandy & Klinowski 2000), which maps the fundamental
patch of each surface into the complex plane. It can be shown (Gandy &
Klinowski 2000) that the P, D and G surfaces all have the same Weierstrass
representation, except for a single parameter q, called the Bonnet angle.
Variation of q maps the surfaces on to one another, and is called a Bonnet
transformation. The Enneper–Weierstrass representation of these surfaces is
unfortunately a little cumbersome to work with, since it involves several elliptic
integrals. Nonetheless, it has been used to derive many properties of the surfaces,
such as the area, Euler characteristic and Gaussian curvature, per unit cell.
These have also been derived numerically for the gyroid and related surfaces of
constant mean curvature (Große-Brauckmann 1997), by discretizing a surface
and permitting it to evolve, under volume constraints, to HZ0.
3. The gyroid

Of these three surfaces, the ‘gyroid’ G is perhaps the most interesting. It is the
only known TPMS, which is balanced (i.e. the two labyrinths can be mapped
onto each other through a Euclidean transformation) while containing no
straight lines; it is also the only known TPMS composed entirely from triple
junctions. The gyroid has symmetry group Ia�3d; the unit cell consists of 96
copies of a fundamental surface patch, related through the symmetry operations
(Gandy & Klinowski 2000) of this space group. Channels run through the gyroid
labyrinths in the (100) and (111) directions; passages emerge perpendicular to
any given channel as it is traversed, the direction at which they do so gyrating
down the channel, giving rise to the ‘gyroid’ name (Große-Brauckmann 1997).
The labyrinths are chiral, so that the channels of one labyrinth gyrate in the
opposite sense to the channels of the other. Looking down the (111) direction of a
gyroid shows a distinctive ‘wagon wheel’ pattern (Avgeropoulos et al. 1997),
which has been observed experimentally in transmission electron micrographs
(TEM) of gyroid phases (Shefelbine et al. 1999). Gyroids have been observed in
many experimental systems, and are usually regarded as the most commonly
occurring of the cubic TPMS geometries. They have been seen in triblock
copolymers (Shefelbine et al. 1999) and lipid–water mixtures (Seddon & Templer
1993, 1995; Mariani et al. 1996; Czeslik & Winter 2002). Attempts have been
made (Chan et al. 1999) to construct a ceramic nanostructured film with the
gyroid morphology through the use of a self-assembling polymer template,
raising the interesting possibility of fabricating chirally selective porous media.
The possibility of using TPMS morphologies for photonic crystals is under active
investigation (Urbas et al. 2002).

There have been hints that lyotropic liquid crystals may play a part in
biological processes such as lipid digestion (Patton & Carey 1979; Rigler et al.
1986), and offer insights into cell membrane properties and dynamics (Stier et al.
1978; Rand 1981; Prestegard & O’Brien 1987). Donnay & Pawson (1969)
suggested that periodic minimal surfaces could be found in nature, and pointed
at the microscopic structure of sea urchin skeletons (Nissen 1969) as a possible
example; micrographic evidence has since been emerged to suggest that cubic
TPMS phases may be present in certain plant cell organelles, and Landh (1995)
RSPA 20061741—8/6/2006—22:15—SRIKANTH—215166—XML RSA – pp. 1–27
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suggests, with micrographic evidence, that gyroid structures may exist in the
endoplasmic reticulum. Schwarz & Gompper (1999, 2000) examined several
TPMS morphologies, and suggested that, for oil–water symmetric systems giving
rise to zero spontaneous mean curvature, the gyroid was the most stable
structure.
4. Dynamical simulations

Despite the significant progress (Schwarz & Gompper 1999) made in free-energy
models, which through analysis and Monte Carlo simulation give a good
understanding of equilibrium properties and phase stability, comparatively little
is known about the dynamics of the cubic phases, or indeed mesophases in
general; free-energy functionals will not give information about the dynamics of a
system far from equilibrium. The limitation to equilibrium states is a severe one,
for several reasons. First, real-world systems may contain boundaries or
imperfections, which prevent ‘perfect’ equilibrium phases from forming. Second,
rheological or otherwise dynamical properties of a mesophase are non-
equilibrium by definition, and so cannot be captured by such treatments.
Many of the mechanical properties of metals and electrical properties of
semiconductors are determined primarily by the nature of defects and impurities,
so an understanding of the non-equilibrium behaviour is essential for the
investigations of material properties. Mesoscale techniques such as dissipative
particle dynamics or lattice Boltzmann, since they can handle kinetic
descriptions, offer a non-equilibrium alternative to the free-energy descriptions.
Groot & Madden (1998) performed DPD simulations of diblock copolymer melts,
which allowed reproduction of several well-known morphologies, and also showed
the dynamical pathways through which they were reached. In particular, they
showed the existence of a ‘gyroid-like’ phase with many triple junctions.
However, the phase was not exactly of cubic symmetry, possibly because of finite-
size effects and frustration.

Using an early version of the LB3D code, Nekovee & Coveney (2001) showed
that it was possible to use the lattice Boltzmann model of Chen et al. (2000) to
simulate the assembly dynamics of lamellar and bicontinuous phases of binary
water–surfactant systems; indeed, they showed the existence of a P-surface cubic
phase of the model. Then, while investigating the effect of the presence of
surfactant on spinodal decomposition, González-Segredo & Coveney (2004a,b)
discovered the existence of a gyroid cubic phase. Importantly, use of the lattice
Boltzmann method allowed modelling of the dynamics of the self-assembly of the
gyroid. These lattice Boltzmann simulations of the gyroid phase demonstrated
several important features. First, it had been suggested (Prinsen et al. 2002) that
simulation of cubic phases might require a model with more complicated
amphiphiles than symmetric dimers, and also that long-range interactions might
be required. The lattice Boltzmann simulations, which used symmetric
amphiphiles with short-range interactions, refuted this. Second, analysis of the
X-ray structure factor of the simulation data showed the existence of oscillating
modes at long times; visualization of the simulation output strongly suggested
that these were due to Marangoni effects (Scriven & Sternling 1960; Grotberg &
Gaver 1996).
RSPA 20061741—8/6/2006—22:15—SRIKANTH—215166—XML RSA – pp. 1–27
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Theissen et al. (1998) describe a lattice Boltzmann model of amphiphilic
systems which is based around a Ginzburg–Landau free-energy functional
(Gompper & Schick 1990; Schwarz & Gompper 2000); however, it should be
noted that this model lacks an explicit surfactant density, making the
assumption that the surfactant is all adsorbed onto the oil–water interface. It
is not expected, therefore, that this model would reproduce Marangoni effects at
the interface. Lamura et al. (1999) describe a Ginzburg–Landau model with
explicit surfactant density, but their model, in turn, lacks explicit surfactant
orientation. The model used in LB3D has both explicit density and orientation
for surfactant particles.

The gyroid self-assembly simulations used initial conditions of a randomized
mixture of oil, water and surfactant, with the oil and water in 1 : 1 ratio. Phase
separation would occur rapidly, within the first thousand time-steps or so. After
phase separation, the system would form a ‘molten gyroid’ phase, consisting of
many oil or water rods surrounded by surfactant; these rods would join up to form
triple junctions, giving rise to a gyroid morphology. Towards the end of these
simulations, after around 30 000 time-steps, the Marangoni oscillations were
observed. These simulations were originally performed to investigate the dynamics
of surfactant-limited phase separation; discovery of the gyroid phase was an
interesting side effect.Owing to this, the simulations ofGonzález andCoveneywere
not optimally suited to examining the gyroid phase, in several ways. First, they
were limited in size: most of the simulation work was done with 643 systems. These
are perfectly adequate for phase-separation studies; however, it was observed that
while at early times there might be several different gyroid regions with different
orientations, at long times thesewould joinup to forma single gyroid grain spanning
the entire simulation grid, a so-called ‘perfect gyroid’. In the real world, cubic
mesophases are far from perfect: despite careful experimental procedures (Hajduk
et al. 1994), artificially created gyroid materials may not consist of a perfect gyroid
repeating throughout space, but rather of many gyroid grains with different
orientations. In addition, there may exist dislocations and defects within these
grains, analogous to the defects found in ordinary solid crystals (Feynman et al.
1964; Kittel 1996). Any investigation of the gyroid domains or the nature of their
interactions would require a simulation of sufficient physical size to accommodate
several domains for the majority of the simulation.

Second, they were limited in time: the time-scales probed (maximum of 35 000
time-steps) offered few hints as to how transient the effects observed were. Phase
separation was observed to happen extremely quickly, over a 1000 time-steps or so,
and formation of gyroid morphology on a slower but comparable time-scale. The
behaviour of gyroiddefects, on the otherhand, takesplace onamuch slower scale, at
least tens of thousands of time-steps, and these time-scales were not probed. With
these limitations inmind, a new set of simulationswas performed specifically to look
at the nature of defect dynamics in the gyroid liquid crystal phase.
5. The TeraGyroid simulations

It was clear that larger simulations were required; how much larger was not so
clear, since defects had not been observed in the unambiguous absence of finite-
size effects. Defect dynamics simulations were performed as part of a larger
RSPA 20061741—8/6/2006—22:15—SRIKANTH—215166—XML RSA – pp. 1–27
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Table 1. Parameter sets used in TeraGyroid simulations.

parameter set 8 set 9

initial oil density nr 0.7 0.7
initial water density nb 0.7 0.7
initial surfactant density nb 0.9 0.6
oil–water coupling gcc 0.08 0.08
oil–surfactant coupling gcs K0.006 K0.006
surfactant–surfactant coupling gss K0.003 K0.0045

Table 2. Simulation durations and end states.

system tmax output rate Dt final state

set 8 163 5000 50 perfect gyroid
323 50 000 500 perfect gyroid
643 200 000 100 gyroid with dislocation pair
1283 384 000 250 single gyroid domain with point defects
2563 57 500 100 multiple gyroid domains

set 9 163 5000 50 perfect gyroid
323 100 000 500 perfect gyroid
643 250 000 500 skewed gyroid
1283 999 900 100 gyroid with dislocation pair
2563 146 500 500 multiple gyroid domains

7Domain growth in the gyroid mesophaseQ3
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project (Pickles et al. 2004) to construct a transatlantic distributed simulation
grid. As part of this project, a significant amount of computing power became
available for use. The simulations of most interest used the parameter sets
(González-Segredo & Coveney 2004a) called numbers 8 and 9, which are shown
in table 1.

Simulations were run at sizes of, among others, 643, 1283 and 2563, for
durations listed in table 2. If a stable gyroid state was reached, then a simulation
was terminated; the systems which did not reach this state ran for as long as
possible under the resource constraints at the time. During each simulation, the
order parameter field fðrÞZrrðrÞKrbðrÞ was stored to disk, as well as the
surfactant density field rsðrÞ. This was performed every Dt time-steps, for values
of Dt also shown in table 2. The output rate was chosen according to several
constraints: it had to be sufficiently rapid to allow observation of the gyroid
dynamics, but limits were imposed by local disk quotas, which would often shift
due to data from other concurrent jobs.
6. Analysis techniques

(a ) The structure function

A commonly examined property of mesoscale systems is the structure function
SðkÞ, defined as the spherically averaged Fourier transform of the order
RSPA 20061741—8/6/2006—22:15—SRIKANTH—215166—XML RSA – pp. 1–27
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parameter fðrÞ:
SðkÞ^

���
ð
fðrÞexpðik$rÞdr

���2
� �

jk 0jZk

: ð6:1Þ

This is very closely related to the ‘structure factor’ measured in small angle
X-ray scattering (SAXS) experiments, which are commonly used in experimental
examination of mesophases (Avgeropoulos et al. 1997; Laurer et al. 1997; Sakurai
et al. 1998; Shefelbine et al. 1999), and has been an important tool in the analysis
of many mesoscale simulations (Velasco & Toxvaerd 1993; Rybka et al. 1995;
Wagner & Yeomans 1998; González-Segredo & Coveney 2004b). To measure the
dominant length-scale of a system, the reciprocal space first moment k1 of SðkÞ is
usually calculated:

k1^

ð
kSðkÞdk

� �. ð
SðkÞdk

� �
: ð6:2Þ

The corresponding length-scale is then L1^2p=k1.

(b ) Polygonal approximation of the interface

Since the interfacial properties are so crucial to the behaviour of the gyroid
phase, it is important to be able to extract the location of the two-dimensional
interfacial surface from the three-dimensional simulation data. In a continuum
system, the interface between the oil and water phases can be defined as the
implicit surface fðrÞZrrðrÞKrbðrÞZ0, for r2R

3. In contrast, the simulation
output data consists of the values of f at discrete sites r i on the lattice; it is not
quite so straightforward to define an interfacial surface because, in general, while
fðr iÞ can be positive or negative, corresponding to the lattice site containing a
majority of red or blue particles, respectively, it is almost never exactly zero.
However, a continuum order parameter field can still be estimated from the
discrete simulation output, by linear interpolation; this interpolated function is
single-valued and continuous across the simulated region, and can be regarded as
the simulated approximation to the order parameter field; the isosurface finterp

ðrÞZ0 is then well defined.
Generation of a polygon mesh approximation to this surface can be achieved

through several means. The most popular method is known as marching cubes:
this technique was developed by Lorensen & Cline (1987). In marching cubes,
each point r on the lattice is assigned a value of 1 if fðrÞ is ‘negative’, or
unambiguously less than zero, and 0 if fðrÞ is ‘positive’, i.e. greater than zero or
within floating-point error of zero. If a positive site is adjacent to a negative site,
then fðrÞ changes sign somewhere along the link between the two sites, and
therefore the link between the sites intersects the contour surface; the position of
these intersections can be found easily through interpolation. The marching
cubes algorithm proceeds by considering each cube of eight sites in turn,
calculating a number between 0 and 255, representing the state of these sites, and
then using this number to find a set of polygons approximating the interface
shape inside the cube. The polygon sets can be stored in a lookup table, making
the algorithm extremely fast.

Unfortunately, the algorithm is not guaranteed to produce a surface with the
same topology as the implicit interpolated surface finterpZ0. In fact, it is possible
for marching cubes to produce ‘non-manifold’ surfaces containing holes; this
RSPA 20061741—8/6/2006—22:15—SRIKANTH—215166—XML RSA – pp. 1–27
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arises because some of the 256 possible states of a cube have more than one way
of being tiled with polygons, and the tilings are topologically different.

Several approaches have been suggested to correct this problem. One such
technique is to tile the space with tetrahedra rather than cubes (Carneiro et al.
1996; Treece et al. 1999), which produces a topologically consistent surface
without holes, but at the expense of speed, memory and geometrical accuracy
(Lewiner et al. 2003). Another approach is the recursive dividing cubes algorithm
(Cline et al. 1988), which has similar performance penalties, particularly for large
datasets.

Chernyaev (1995) observed that it was possible to extend the marching
cubes approach to produce polygon surface meshes which are not only
topologically consistent (i.e. do not have any holes), but also topologically
correct (i.e. homeomorphic to the surface finterpZ0). An implementation of
this technique was described by Lewiner et al. (2003), who used lookup tables
to determine which tests to perform, resulting in a very efficient algorithm to
produce a triangle mesh which is both topologically consistent and
topologically correct.
(c ) Fluid properties at the interface

By applying this algorithm to the simulation output datasets, a polygonal
approximation to the interface between the two fluid components can be found.
This is useful not only for direct visualization of the system, but also for
calculating many interesting properties.

First, the interfacial area of the system can be calculated, simply by adding up
the areas of all of the triangles in the surface. Without knowing the location of
the interface, any space-varying property aðrÞ, such as surfactant density, can
only be averaged over the bulk of the three-dimensional system. However, once
the interface has been polygonized, the variation of a over the interface can now
be found, by interpolating a to the surface vertices and taking an area-weighted
average. Consider a single triangle Di, area Ai, vertices ai; bi; ci. The value of a
averaged over the triangle is

ai Z
1

Ai

ð
Di

aðrÞd2Aix
1

3
½aðaiÞCaðbiÞCaðciÞ�: ð6:3Þ

This relationship is exact if a varies linearly over the surface of the triangle.
Integrating a over the entire closed polygon mesh M is equivalent to summing
the values integrated over each individual triangle:

#
M
aðrÞd2AZ

X
i

ð
Di

aðrÞd2Aix
X
i

aiAi: ð6:4Þ

Hence, the average of a over the surface is

haiM Z

X
i

aiAi

X
i

Ai

: ð6:5Þ
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(d ) Interfacial curvature

Any point r on the surface fðrÞZ0 has a unit normal n̂, defined as
n̂ðrÞ^ðVfÞ=jVfj. The shape operator S is a rank-2 tensor defined as S^KVn̂.

The Gaussian and mean curvatures can then be found from the determinant
and half the trace of the shape operator, respectively. More usefully, the surface-
averaged value of the squared mean curvature, hH 2isurf can also be calculated;
this quantity is physically interesting because it appears as a term in the Helfrich
Hamiltonian. The contribution to the surface-averaged curvature from each
lattice site can also be calculated. This curvature field has low values where there
is no interface, or where the interface has a minimal surface structure, and it has
a high value where the interface is highly curved; consequently, it can be used to
distinguish non-minimal-surface defect regions from the bulk gyroid phase
(figure 5).

(e ) Interfacial Euler characteristic

Consider a two-dimensional closed surface tiled with a polygon mesh; each
polygon is joined to its neighbours by a straight edge, and the edges meet at
point vertices. Suppose that the surface has V vertices, E edges and F polygon
faces; the Euler characteristic or Euler number of the surface is defined as
csurf^VKECF. A surprising and very powerful result of elementary topology
(Kinsey 1993; Nakahara 1993; Armstrong 1997) is that the Euler characteristic
depends only on the topology of the surface, and not on its shape or the manner
in which it is tiled with polygons. More precisely (Kinsey 1993), if S1 and S2 are
compact, connected surfaces without boundary, then S1 is topologically
equivalent to S2 if and only if cðS1ÞZcðS2Þ, and either both are orientable or
both are non-orientable. A surface is non-orientable if it contains Möbius bands;
all of the surfaces under consideration here are orientable, so determination of
topological equivalence reduces to comparison of the Euler characteristic.

The Euler number is additive; a systemwith n surfaces Si eachwith Euler number
ci has total Euler number

P
ici. The surfacemeshes produced by themarching cubes

algorithm are composed entirely of triangles; this property simplifies calculation of
the Euler characteristic. Each triangle on themesh has three edges; each edge on the
mesh joins exactly two triangles. Hence, the number of edges is 3/2 times the number
of triangles: ctriZVKECFZVKð1=2ÞF.

The Euler number of a surface is directly related to another topological
quantity called the genus g, which is often regarded as simply the number of
holes in the surface. For an orientable surface (Kinsey 1993), cZ2ð1KgÞ. The
Euler number is an extremely useful concept when trying to understand the
output of mesoscale simulations. Imagine a lattice Boltzmann simulation of a
spherical-droplet phase, where the droplets are defined as regions for which the
order parameter fðrÞ!0. Since the Euler number of a sphere is 2, and since it is
additive, the number of droplets in the system is simply half the Euler number of
the fZ0 surface. Moreover, the Euler number, being a topological invariant, is
insensitive to fluctuations in the droplet shape or size, provided that each droplet
remains simply connected.

Recently, the Euler number was used by Hołyst & Oswald (1998) to
characterize fluctuating wormhole-like passages (Goos & Gompper 1993)
appearing in Monte Carlo simulations of lamellar phases; similar wormholes
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have been observed in a lattice gas dynamical model (Boghosian et al. 1996). In a
system with periodic boundary conditions, a membrane spanning both the x and
y directions is topologically equivalent to the surface of a torus, and therefore has
Euler number zero; thus, a lamellar stack of membranes will also have Euler
number zero. However, if a wormhole forms between two lamellae, the Euler
number will suddenly jump to K2, hence the Euler number isK2n for n such
wormholes. The Euler number has also been used in examinations of TPMS
surfactant morphologies (Schwarz & Gompper 2000) and experimental MRI data
(Gerig et al. 1999). A gyroid surface has Euler characteristic K8 per unit cell.
7. Analysis of the simulation data

So far, both the techniques used to simulate assembly of the gyroid mesophase
and the techniques used to analyse the resulting data have been presented. The
following section presents the actual analysis of the generated data, and a
discussion of the physics involved.

(a ) Initial phase separation

The simulated system is initialized to a very highly mixed and disordered
state, often called a ‘quench’ in the literature. The system undergoes spinodal
decomposition (Bray 1994; Kendon et al. 1999; Chin & Coveney 2002;
González-Segredo et al. 2003), and rapidly divides into interpenetrating regions
of bulk water and bulk oil, separated by a layer of surfactant. If the system
contained only water and oil, each component would eventually form a single
large domain; however, this situation would leave insufficient surface area to
allow all of the surfactant to sit at the oil–water interface. Therefore, the
surfactant has the effect of limiting the domain growth (Love et al. 2001).

Figure 2 shows the dominant length-scale L1ðtÞ for the first 5000 time-steps of
three simulations using parameter set 8. This shows that the length-scale rapidly
increases as the oil and water components separate, but stays relatively constant
after around 1000 time-steps. Figure 3 shows renderings of the oil–water interface
at fZ0 over the first 500 time-steps, indicating that the rapid increase in
structure factor corresponds to the formation of a mesh of interconnecting
channels, all of roughly the same width. Visual inspection of the interface shows
that no gyroid structure is present during the channel formation.

(b ) Gyroid formation: parameter set 9

Figure 4 shows the mean curvature H of the fZ0 interface, averaged over the
whole surface. The most obvious feature of this graph is the magnitude of the
curvature fluctuations in each system. The 2563 system, being the largest, had
the most interfacial area over which to average: hHi therefore had the lowest
amount of fluctuation in this system, with a standard deviation of 8.41!10K5

inverse lattice units. The 1283 system had fluctuations roughly twice as large,
with a standard deviation of 1.70!10K4, and the 643 a little over twice as large
again, at 3.86!10K4 inverse lattice units (figure 5).

The next obvious feature of figure 4 is that, while the 1283 and 2563 systems
fluctuated about zero for the entire simulation duration, the 643 simulation
RSPA 20061741—8/6/2006—22:15—SRIKANTH—215166—XML RSA – pp. 1–27
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Figure 2. Typical length-scale L1(t) as a function of time, for three simulations on parameter set 8.
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dropped to a negative-mean-curvature geometry after around 105 time-steps.
Visual inspection showed that this corresponded to the system collapsing into a
stable state, forming a regular structure which filled the entire simulation lattice,
apart from two point defects.

Looking along the Y-axis, the structure reconnected with itself through the
periodic boundary conditions, moving half a unit cell in each of the X and Z
directions after traversing the lattice. There were seven unit cells in the X and Z
directions, and six and a half in the Y direction; a topologically perfect gyroid
with this many unit cells would have an Euler characteristic of K2548. The
simulated structure had cZK2540 due to the presence of the point defects. The
skewing of the ‘gyroid’ in the X and Z directions and consequent rhombohedral
(rather than cubic) liquid crystal structure meant that the oil–water interface did
not form a zero-mean-curvature gyroid structure, but a skewed gyroid with, on
average, negative mean curvature. It should be noted that the production of a
gyroid with this orientation is a reassuring sign that the production of a gyroid
mesophase is not a simulation artefact due to some anisotropy induced by the
lattice, in which case such misalignment would not be expected.

Figure 6 shows thefZ0 isosurface, coloured red on the oil-majority side and blue
on the water-majority side, at time-step 2.5!105. The region shown lies at the
interface between the two domains; the domain wall is shown running vertically
through the centre of the diagram. Careful examination of the channels running
through the diagram shows that, while the two domains contained gyroids with
roughly the same orientation, the domains had opposite chirality: red channels
spiral clockwise away from the viewer in the right-hand side domain, but
anticlockwise away from the viewer in the left-hand side domain. Since the model
used is oil–water symmetric, there should be no preference for, say, oil channels to
be left-handed, so the existence of chiral domains is to be expected.
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Proc. R. Soc. A



time-step 0 time-step 300

time-step 100 time-step 400

time-step 200 time-step 500

Figure 3. The oil–water interface (fZ0) during early time evolution of a parameter set 8 system
running on a 1283 lattice.
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Figure 5 shows volume renderings of the curvature contribution, highlighting
regions with high interfacial curvatures. At time-step 10 000, the gyroid
structure had not emerged, but by time-step 40 000, multiple gyroid domains
were visible. These domains were observed to merge, until only two domains
were left in the system, around time-step 200 000. One of the domains then
collapsed over the next hundred thousand time-steps, leaving behind two
columnar defect regions which persisted for as long as the simulation
continued.

Figure 7 shows a volume rendering of the order parameter field at time-step
5!105, with the transfer function chosen to highlight regions of high oil density
and regions of high water density in red and blue, respectively. By this time, the
domain walls had collapsed into a pair of dislocation lines running right through
RSPA 20061741—8/6/2006—22:15—SRIKANTH—215166—XML RSA – pp. 1–27
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Figure 4. Mean curvature H averaged over the fZ0 surface for parameter set 9, for three different
simulation lattice sizes.
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the system. The green lines show a Burgers loop (Kittel 1996) around each
dislocation; it can be seen that the Burgers vectors for each dislocation are equal
in magnitude and opposite in direction (figures 8–10).

(c ) Gyroid formation: parameter set 8

Figures 11 and 12 show the surface-averaged mean curvature hHi and surface-
averaged squared mean curvature, respectively, for simulations using parameter
set 8. The fluctuations in the mean curvature again dropped in magnitude with
increased system size, just as observed with parameter set 9. On closer
examination, the fluctuations for the 1283 simulation dropped in magnitude
around time-step 2.5!105, with a similar halt in the evolution of the other bulk
and interface properties. The domain wall visualizations (figure 13) show that the
system produced two domains at late times, and one of these disappeared around
time-step 2.5!105, leaving no dislocations or other major defects in the system.
It was verified by direct inspection that the last two domains were again of
opposite chirality. At the end of the simulation, time-step 378 500, the system
was found to contain a gyroid with 15 unit cells in each direction, with an Euler
characteristic of K26 828, corresponding to 3353.5 gyroid unit cells. A 153

periodic gyroid would be expected to contain 3375 unit cells; the discrepancy is
attributed to persistent point defects, which appeared as the domains formed, up
to time-step 105, and remained unchanged for the rest of the simulation.

The 2563 simulation, limited only by available computer time, ran until time-
step 57 500, at which point it was still composed of multiple chiral gyroid
RSPA 20061741—8/6/2006—22:15—SRIKANTH—215166—XML RSA – pp. 1–27
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time-step 10000 time-step 40000 time-step 70000

time-step 140000 time-step 210000 time-step 280000

time-step 350000 time-step 420000 time-step 500000

Figure 5. Orthographic-projection volume rendering highlighting domain walls for a 1283

simulation using parameter set 9, showing the late-time collapse of the last domain into a pair
of line dislocations. Periodic boundaries are enforced; one of the dislocations straddles an edge of
the simulation box.
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domains. The domains were observed to interpenetrate in a manner not unlike
the morphology of single-component fluid domains during spinodal
decomposition.

Figure 8 shows the averaged squared mean curvature plotted against time for
1283 and 2563 simulations of parameter sets 8 and 9. Both of the parameter set 8
systems appeared to take on fairly close power-law behaviour (seen as straight
lines on the log–log graphs) after time-step 104, when the system recognizably
contained gyroid regions. The parameter set 9 systems also did this, but took
longer to do so; the value of hH 2i for the set 9 systems was somewhat larger than
RSPA 20061741—8/6/2006—22:15—SRIKANTH—215166—XML RSA – pp. 1–27
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Figure 6. The oil–water interface at time-step 2.5!105 for the 1283 simulation of parameter set 9.
Note that the domains have opposite chirality.
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that of the set 8 systems, until around time-step 5!104, at which point they
appeared to show the same behaviour. The 1283 systems eventually deviated
from the power-law behaviour as finite-size effects set in, around time-step
2!105 for set 8 and 3!105 for set 9.

Figure 10 shows renderings of the domain walls and defects of the parameter
set 9 system at points before and just after it reached power-law behaviour, with
the defects for the parameter set 8 system plotted for comparison. During the
period when the set 8 system showed power-law scaling but the set 9 system did
not, the latter appeared to have a rather higher density of defective regions,
shown as dark regions in the volume renderings. After time-step 50 000, both
systems appeared clearly separated into domains.

The datasets for hH 2iðtÞ for each simulation were trimmed to only include the
time-steps after 10 000, when gyroid structures form, for the parameter set 8
simulations, and the time-steps after 50 000, after clear domain formation, for the
parameter set 9 simulations; they were also restricted to the time-steps before the
sudden drop in and stabilization of the squared mean curvature for the 1283

simulations, to exclude the corresponding finite-size effects.
A relation of the form hH 2iZatn was then fitted to each trimmed dataset; the

fitted values of the exponent n are given, along with the relevant time periods, in
table 3. The fitted exponents together had a mean of K0.481 and standard
deviation of 0.037. This is quite close to an exponent of nZK1=2; the data points
RSPA 20061741—8/6/2006—22:15—SRIKANTH—215166—XML RSA – pp. 1–27
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Figure 7. Orthographic-projection volume rendering of the 1283 simulation of parameter set 9 at time-
step 5!105. Oil-bearing regions are highlighted in red, water-bearing regions in blue and the interfacial
regions are suppressed. The green lines show Burgers circuits around the two dislocations.
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to which these fits were made are plotted together in figure 8, along with a tK1=2

power law for comparison. A possible reason for power-law scaling and for why
the exponent should be K1/2 is given below.

Consider a large system of volume V, containing many gyroid domains. Let
the length-scale of a typical single domain be L1ðtÞ, and suppose that the gyroid
length-scale grows as a power law of time, L1wtn, just as domains often do in,
e.g. spinodal decomposition. The surface area of a single domain will then scale as
A1wt2n, and the volume of a single domain as V1wt3n.

The total number N of domains in the system is V=V1, so NwtK3n. The total
surface area A of domains is proportional to both the number of domains and the
typical surface area of a single domain, so therefore AwtKn. If the domain walls
all have roughly the same width l, then the total volume of the domain walls
scales as lAwtKn. Therefore, the contribution of the domain walls to any
extensive property of the system would also be expected to scale as tKn.

A gyroid is a minimal surface, so one would expect the contribution to the
average squared curvature of the system from the well-formed gyroid regions
inside domains to be small. On the other hand, the domain walls are non-
gyroidal, and have non-zero mean curvature; if there is a roughly constant
contribution to hH 2i per unit volume of domain wall, then hH 2i could also be
expected to scale as tKn. If this is the case, then that would further suggest that
the length-scale of the gyroid domains indeed scales as Lwt1=2, indicative of
random-walk or diffusive behaviour.
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Figure 8. Averaged squared curvature against time for four simulations of different sizes and
parameter sets. Late-time finite-size effect behaviour is clear in the 1283 simulations, where the
curvature drops close to zero as a perfect minimal surface is formed.
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sizes, with a tK1/2 power law plotted as a guide to the eye.
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Figure 10. Volume rendering of domain walls in two 2563 systems. At earlier times, the parameter
set 9 system has a larger density of defective, non-gyroidal regions. By time-step 55 000, both
systems are much more clearly separated into domains.
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Figure 11. Mean curvature H averaged over the fZ0 surface for parameter set 8, for three different
simulation sizes, showing that the fluctuation in mean curvature is reduced with system size.
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Figure 12. Squared mean curvature H2 averaged over the fZ0 surface for parameter set 8, showing
smaller fluctuations in larger systems, and perfect minimal surface formation in the 1283

simulation.
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time-step 0 time-step 500 time-step 10000 time-step 250000

Figure 13. Images from a gyroid self-assembly simulation. The images in the top row show slices
through the order parameter field, with oil-majority regions in black and water-majority regions in
white. Images in the middle row show the corresponding interfacial curvature per lattice site, with
high curvature white and low curvature black. Images in the bottom row show an orthographic-
projection volume rendering of the order parameter, looking down the (111) direction to show the
characteristic ‘wagon wheel’ pattern seen in electron micrographs (Thomas et al. 1988). The
simulation was performed on a 1283 lattice using parameter set 8.

Q2

Table 3. Exponents n for the relation hH2iZatn fitted to the squared mean curvature of four
simulations between the times tmin, when clear domains have formed, and tmax, when the finite size

Q1

of either the system or the available computer resources limits the simulation.

system tmin tmax exponent (G uncertainty in fit)

1283 set 8 10 000 200 000 K0.474G0.001
[p] 1283 set 9 50 000 300 000 K0.423G0.002

2563 set 8 10 000 57 500 K0.5078G0.0008
2563 set 9 50 000 146 500 K0.519G0.002
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8. Conclusions

Simulations of the self-assembly of a surfactant gyroid mesophase were
performed; for the first time, the simulations were sufficiently large to clearly
show the formation and evolution of multiple gyroid domains.
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All systems underwent a rapid phase separation, during which oil and water
phases formed a network of channels, separated by surfactant. After the phase
separation, the systems began to form a gyroid mesophase. At late times, when
clear domain walls had formed, power-law scaling of the average squared mean
curvature of the system was observed, with exponent close to K1/2. This may
indicate diffusive scaling of the length-scale of the domains themselves.

Analysis of simulated mesophases is non-trivial, due to the difficulty of
defining a gyroid order parameter. In a ferromagnetic system, one can use the
magnetization MðxÞ as an order parameter; all points within a ferromagnetic
domain will have the same value of M . In an ordinary fluid phase transition such
as spinodal decomposition, the density of one fluid at a point can be subtracted
from the density of the other, and normalized to give a scalar order parameter
which varies from C1 in one fluid to K1 in the other, and which is zero in
disordered, mixed regions. This kind of localized order parameter is sufficient to
characterize the rapid separation of components before a mesophase is formed;
however, after the initial demixing, further ordering of the system is
morphological in nature, as gyroid regions are formed. Such a localized order
parameter cannot describe this sort of ordering, since it is defined on too small a
length-scale, and is not morphological in nature.

A set of tools was developed for calculating a polygonal approximation to the
fZ0 surface of a simulated mesophase, in a topologically consistent manner;
calculations of useful quantities such as the topologically invariant Euler
characteristic, total interfacial area and interfacially averaged squared mean
curvature were then possible. The average squared mean curvature was observed
to vary as a power law with exponent approximately K1/2 over the régime
where domains are clearly formed but finite-size effects have not yet set in; this
may indicate random-walk motion of the domain walls. Direct visualization of
the interface shows the existence of chiral domains, as should perhaps be
expected for a symmetric amphiphile which has no intrinsic chirality. Once
domains effectively disappeared due to reaching the simulation system size, the
formation of line dislocations analogous to those in solid crystals was observed.

These simulations have opened up several avenues for further work. Even
disregarding the physics involved, the techniques for characterization of
lyotropic liquid crystal phases could still be improved, by looking at, for
example, localized contributions to the interfacial curvature or Euler charac-
teristic. Gyroid domain walls were observed to have a high density of points
where both the local order parameter f and the local order parameter gradient
were small; while this may be due to the structure of the fZ0 surface inside
domain walls, an improvement of this technique beyond a simple visual tool
could lead to an algorithm for spatial localization of domain walls, and,
consequently, the ability to make more quantitative analyses of the domain
behaviour.

The simulations raise a number of physical questions. Those performed so far
have all had ‘oil’/‘water’ symmetry and a symmetric amphiphile, a situation
which may be hard to realize exactly in experiment. The simulations produced
chiral domains; it would be interesting to see if these could ever be produced
experimentally, since the existence of such domains would affect the feasibility of
producing gyroidal chirally selective filters. Observations of gyroid chirality
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would be difficult to make using TEM or SAXS techniques, but might be possible
using, for example, transmission electron microtomography (Laurer et al. 1997).

Finally, it is interesting to note that the lattice Boltzmann method allowed the
bridging of two different length-scales in these simulations: the scale (approx. five
lattice sites) of the single-fluid-component domains, and the scale (greater than
or approx. 50 lattice sites) of gyroid domains.
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GR/R94916/01. Most of the scientific data on which this paper is based were obtained during
the TeraGyroid project (http://www.realitygrid.org/TeraGyroid.html), jointly funded by NSF
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grid formed from the US TeraGrid and the UK national supercomputing centres, to generate and
visualize the results over a very short period of time. We are grateful to Thomas Lewiner for
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